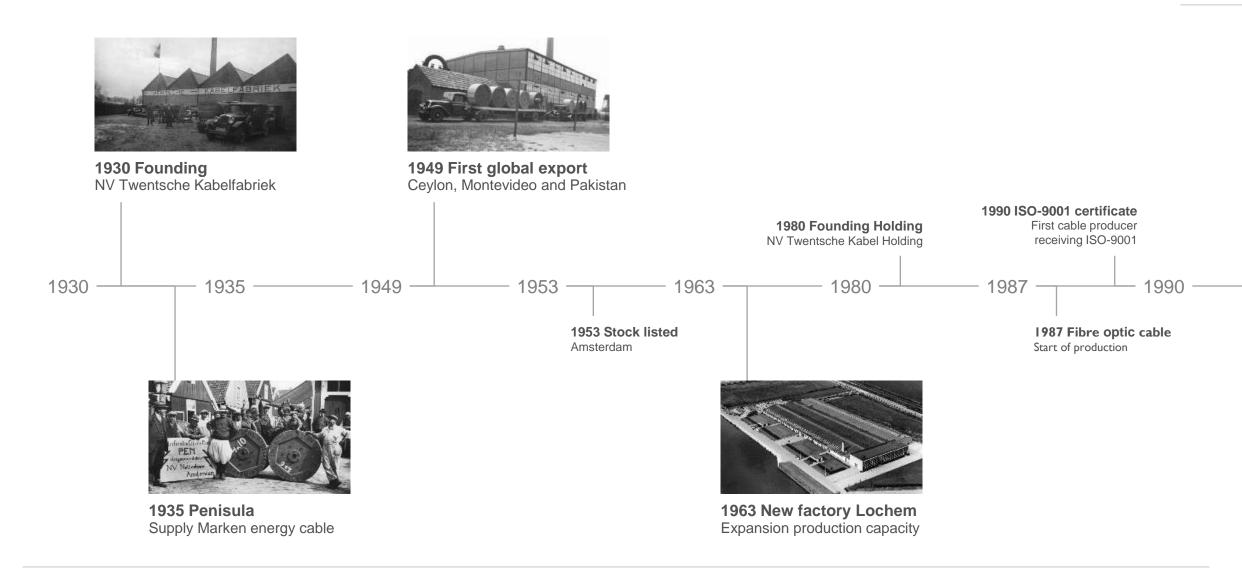


TKF

Founded in 1930

From cable manufacturer, to a technologically leading supplier of connectivity solutions


- Employees 830 (FTE)
- Head office in Haaksbergen, the Netherlands
- Member of TKH Group NV

OUR MARKET SEGMENTS

- Building & Infrastructure
- Energy
- Subsea
- Marine & Offshore
- Industry
- Telecom

SMART CONNECTIVITY SYSTEMS

1998 China TFO Opening production location

1997 Achieving ISO-14001
Environment certificate

1996 — 1997 — 1998 —

1996 First solution assignment PAN – network PTT

2006

2006 First offshore power cable project

2010 Integration production locations All under one roof, location Haaksbergen

Expected 2023 opening factory
Opening production plant ready
for 132 kV in Eemshaven

2023

2010 ____ 2015 ____ 2017 ____

Subsea production plant Opening state-of-the-art subsea production plant Lochem (NL)

2020 Celebrating 90 years Connecting people and technology

TKH GROUP NV FACTS & FIGURES 2022

TURNOVER

1,816.6 € MLN

2021 1,523.8 € MLN

TURNOVER GROWTH

19.2%

2021 18.2%

NET CO₂E FOOTPRINT REDUCTION

compared to reference year 2019

42.7%

2021 29.8%

DIVERSITY

female executive and senior management

18.4%

2021 17.7%

ROS

12.9%

2021 12.4%

EBITA

234.8 € MLN

2021 189.6 € MLN

TURNOVER LINKED
TO SDGs

68%

2021 68%

ACCIDENT RATE (LTIFR)

0.8

2021 0.7

ROCE

23.2%

2021 20.5%

DIVIDEND PROPOSAL

per (depositary receipt of an) ordinairy share

1.65

2021 € 1.50

SATISFACTION SCORE

EMPLOYEE

⁷.6 8.

2021 7.4

2021 8.4

CUSTOMER

ESG ASSURANCE

limited assurance on non-financial KPIs (number of KPIs)

11

2021 11

TKF REFERENCES (1)

Inter-array cable offshore wind park Windplan Blauw – 33kV 2022, Netherlands *Client: Ballast Nedam*

Inter-array cable offshore wind park
Baltic Eagle – 66kV
2021, Germany Client: Van Oord

Inter-array cable offshore wind park
Hollandse Kust Noord – 66kV
2021, Netherlands Client: Van Oord

Subsea cable connection Holwerd– Ameland connection –33kV 2021, Netherlands Client: Liander

Inter-array cable offshore wind park Hollandse Kust Zuid – 66kV 2020, Netherlands Client: Vattenfall

Inter-array cable offshore wind park Kaskasi – 33kV 2020, Germany Client: Seaway 7

Subsea cable connection Windpark
Fryslân – 33kV
2020, The Netherlands Client: Van Oord

A TRACK
RECORD
SINCE 2008 IN
SUBMARINE
CABLING

TKF REFERENCES (2)

Inter-array cable offshore wind park Hohe See – 33kV

2018, Germany Client: EnBW

Inter-array cable offshore wind park
Albatros – 33kV
2018, Germany
Client: EnBW

Replacement subsea cable Perenco

2016, Gabon

Client: Perenco

Replacement subsea cable Perenco

2015, Gabon

Client: Perenco

Dynamic cable for Texel Tidal

2015, The Netherlands Client: Bluewater

Subea cable connection Germany

2015, Germany

Client: Wiking Kabel

Replacement subsea cable Perenco

2015, Gabon

Client: Perenco

- TKF UNIQUE INTER ARRAY CABLE DESIGN
- NEW FACTORY ARRAY CABLES EEMSHAVEN
- TRENDS IN ARRAY CABLING 2020 2030

NEXT VOLTAGE LEVEL 132 kV

FLOATING WIND & DYNAMIC CABLES

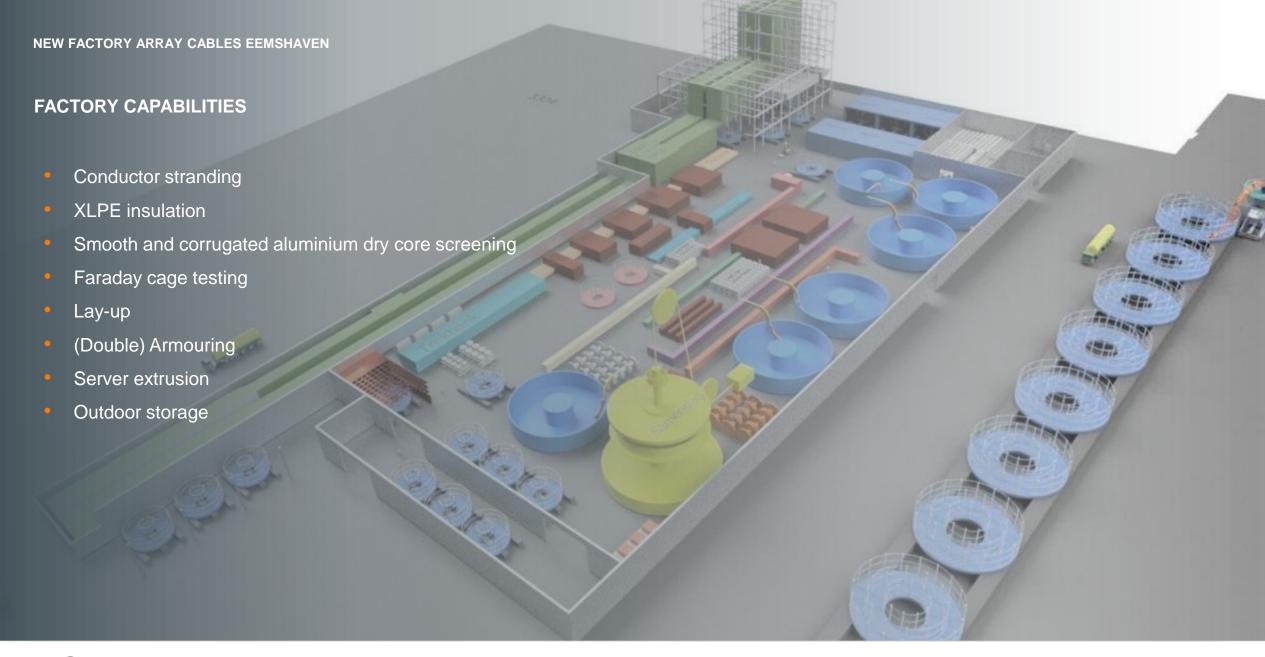
SUSTAINABILITY & CIRCULARITY

TKF CABLE DESIGN

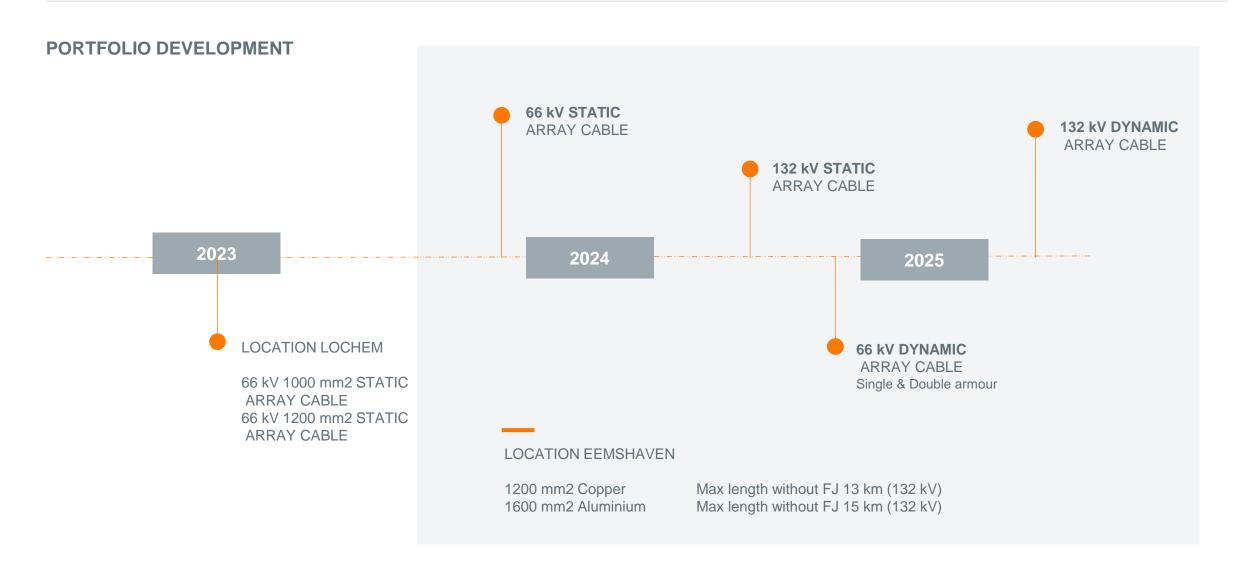
- Dry design
- Aluminium or Copper conductors
- XLPE Isolation
- Smooth welded aluminium sheath
- Steel wire armouring
- Semi-conductive inner sheath, HDPE outer sheath
- Integration of Optical Fibre cables

UNIQUE DESIGN RESULTING IN:

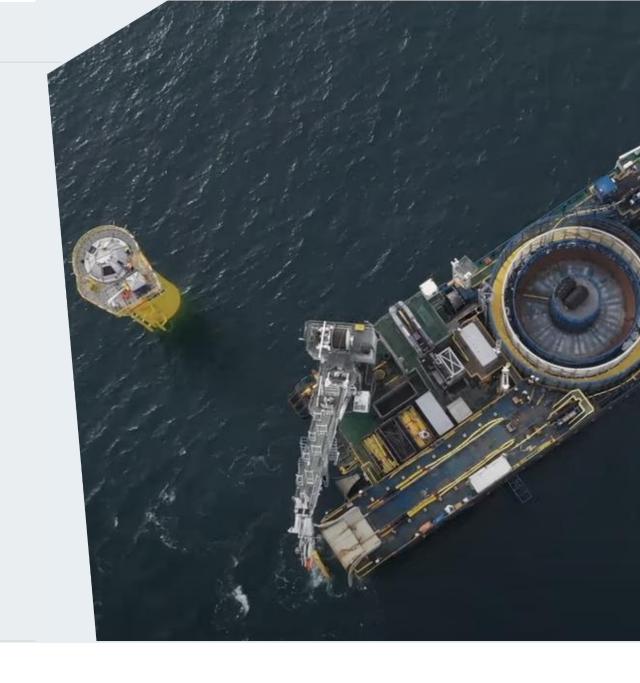
- Reduction of installation and termination time
- Reduction of risk during installation and termination (knife free installation)
- Superior life time


INVESTMENT NEW FACTORY

LOCATED IN EEMSHAVEN, THE NETHERLANDS


- State of the art machinery
- 2023

	Lochem	Eemshaven
Maximum Cable Conductor Size	1000mm2 AI (5km) 800mm2 Cu (4.5 km 170mm dia	1600mm2 Al (15km max.) 1200mm2 Cu (13km) 270mm dia
Voltage level	33 and 66kV	33 – 132kV
Maximum batch weight (without factory joints)	350 tonnes	1500 tonnes



NEXT VOLTAGE LEVEL 132 kV

OPPORTUNITY TKF CABLE DESIGN

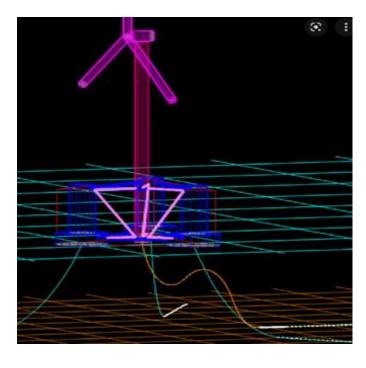
- TKF is best prepared; SWAS Smooth Welded Aluminium Sheath, the ultimate solution for dry 132kV IAC
- SWAS is TKF's standard proven screen technology for 33 kV and 66 kV IAC
- TKF-SWAS single core is type tested up to 2500 mm2 150 kV
- Investment new factory ready for 132 kV
- TKF's new factory will be equipped with our proven SWAS technology for 132 kV 1600 mm2 IAC
- Type test certification is foreseen in 2024

FLOATING WIND & DYNAMIC CABLES

OPPORTUNITY TKF CABLE DESIGN

- Dynamic cables under development by corrugated welded
 Aluminium sheath to improve fatigue resistance
- All other advantages and opportunities are applicable for TKF dynamic design
- Especially the welded sheath is a competitive advantage for this application because it contributes in a dry design.
- Single or double armour, depending on the severeness of the application
- Implementation of new test facility in progress (Cage of Faraday and relevant test equipment)

TKF DESIGN FOR DYNAMIC CABLE



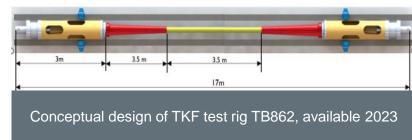
DRY DESIGN ACCORDING TO IEC & CIGRE

- XLPE insulation
- CWAS, Corrugated welded aluminium sheath
- ST7 HDPE core sheath
- Extruded interstice filler
- Optical fibre cables
- Single armour for shallow water
- Double armour for deep water
- PE serving

Applicable voltage levels

33kV, 66kV and 132kV

DEVELOPMENT & PLANNING DYNAMIC CABLES


- TKF's design principles are based on analytical research and scale simulations in water basins
- Product development and proof of concept 2023
- Qualification 66kV in 2024/25

CONDITIONS FOR QUALIFICATION

- Type test standard according to IEC 63026 & Cigre TB623
- Type test dynamic according to Cigre TB862

SUSTAINABILITY & CIRCULARITY

OPPORTUNITY TKF CABLE DESIGN

 Compared to competition, TKF design results in highest level of recyclability.

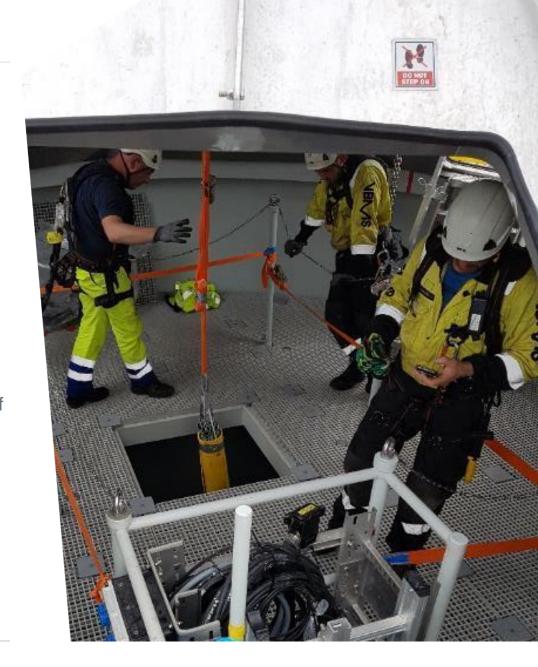
• TKF design allows implementation of negative footprint polymers (implementation from 2023).

A SUSTAINABLE CABLE DESIGN

LEAD FREE DESIGN

Without the use of lead, a carcinogenic heavy metal

NO USE OF BITUMEN


No risk of leaking of chemicals into the marine environment

EASY RECOVERABLE

 Due to the extruded outer sheath the cable is easy recoverable without the risk of polluting the marine environment

RECYCLABILITY

 The metals and the polymers can be easy recycled and can be used for similar applications (not down graded).

Resourcepassport

Article number: 307630
Design number: CONF151060

Product decription: Uitgeladen Subsea kabel op locatie 306630 3x1x630 mm² + 1x36 SM-FO

Supplier: TKF (B.V. Twentsche Kabelfabriek)

 Date:
 25 July 2022

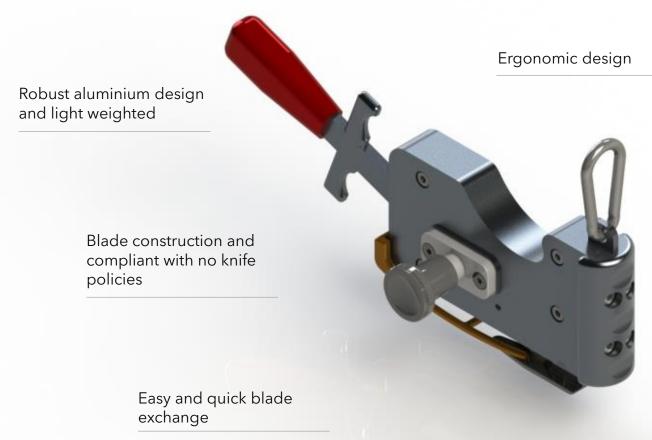
 Total weight:
 32101.6 kg/km

The weights shown are an approximation of the actual ratios per kilometer product.

Base material	Revoled	Re/Down in	Re inle	Re/Down out	Supplier Tier .	(Base)	Supplier ier 2	Source	(Base) material	Weight
										ıkg/k,
Copper (electronic purity)	40	R	100	R	Various suppliers (EU)	Copper	Worldwide	Copper mine	Copper ore	37,5
XLPE Insulation (natural)	0	N.A.	97	D	Various suppliers (EU)	Polyethylene	Worldwide	Oil extraction	Petroleum	2885
PE	0	N.A.	95	D	Various suppliers (EU)	Polyethylene	Worldwide	Oil extraction	Petroleum	3830
PE	0	N.A.	95	D	Various suppliers (EU)	Polyethylene, Pigment	Worldwide	Oil extraction	Petroleum	24,2
Aluminium (electronic purity)	0	N.A.	100	R	Various suppliers (EU)	Aluminium	Worldwide	Bauxite mine	Bauxite	5711
PP	0	N.A.	100	D	Various suppliers (EU)	Polypropylene	Worldwide	Oil extraction	Petroleum	84
PP	0	N.A.	100	R	Various suppliers (EU)	Polypropylene	Worldwide	Oil extraction	Petroleum	302
Zinc plated steel	18	R	100	D	Various suppliers (EU)	Iron	Worldwide	Iron mine	Iron ore	9885
XLPE Semiconductive (black with carbon)	0	N.A.	97	D	Various suppliers (EU)	Polyethylene	Worldwide	Oil extraction	Petroleum	609
Steel	0	N.A.	100	D	Various suppliers (EU)	Iron	Worldwide	Iron mine	Iron ore	28
Ink	0	N.A.	0	N.A.	Various suppliers (EU)	Acrylate	Worldwide	Oil extraction	Petroleum	0,02
Waterblocking tape	0	N.A.	0	N.A.	Various suppliers (EU)	Unknown	Worldwide	Unknown	Unknown	194
Waterblocking tape	7,3	N.A.	0	N.A.	Various suppliers (EU)	Polyester, SAPs, carbon black	Worldwide	Unknown	Unknown	108
Optical fibre	0	N.A.	0	N.A.	Worldwide	Fused silica, Arcylate	Worldwide	Silica Mine, Oil extraction	Silica, Petroleum	7,2
Polymeric filler compound	0	N.A.	100	D	Various suppliers (EU)	Polymeric filler compound	Worldwide	Oil extraction	Petroleum	8418

RECYCLABILITY

- Per 2022 partly Downgrade (waste during production and installation)
- After Operational lifetime: 99%
 reusable (polymers by pyrolysis)


RECYCLED IN:

Copper 40%, steel 18%, tapes 7%

WORK IN PROGRESS:

- Increase % copper, steel, others
- Introduction of non-fossil polymers
- Recycling Aluminium alloy conductors

TKF SUPER SHEATH CUTTER®

Safe for underlying cable components

Designed for rope access stripping activities

Partnership success

Stripping cable without the use of a knife. To support a no knife policy.

Dedicated tools for individual cable layers to support efficient off-shore works.

TKF organizes inhouse stripping sessions to show the best practise with regards to safety, efficiency and lowest risk for cable damages

Thank you

